Cell, Molecular, and Developmental Biology Theme

Prospective students should use this checklist (http://www.uab.edu/graduate/images/acrobat/checklist/CMDBchecklist.pdf) to obtain specific admissions requirements on how to apply to Graduate School.

Director: Dr. Alecia Gross
Phone: (205) 975-8936
E-mail: agross@uab.edu
Website: www.uab.edu/gbs

Theme Information

Objectives
The Cell, Molecular, and Developmental Biology (CMDB) graduate theme is part of an umbrella graduate program in Biomedical Sciences that focuses on basic process in cell, molecular and developmental biology and how defects in these processes result in human diseases and birth defects. CMDB students will receive comprehensive training and instruction in cell, molecular, and developmental biology using modern tools and approaches as well as a wide range of model organisms and cell culture systems. The overall goal of the theme is to develop well-rounded scholars with expertise applicable to multiple fields pertinent to a productive research and teaching career in academic science centers, research institutions, and industry.

Admission Requirements
Students are admitted into UAB Graduate Biomedical Sciences (GBS) umbrella program and indicate a theme preference. Applicants to the UAB Graduate School are reviewed by the GBS Admissions Committee and will be evaluated on the basis of their undergraduate performance (both the curriculum and grade point average), letters of recommendation, GRE scores, a personal statement of research performance (both the curriculum and grade point average), letters of recommendation of the mentor and the student's thesis committee.

Acceptance into CMDB requires a bachelor's degree including undergraduate coursework in calculus, general and organic chemistry, and at least one introductory course in zoology or biology by the time of entrance. The CMDB theme invites applications from individuals committed to obtaining a graduate education in biomedical sciences. Once accepted into GBS, students must complete the GBS core curriculum and three scientific research rotations in GBS laboratories. CMDB students will then begin course work in areas related to his/her research interests and training needs determined through the advice of faculty mentors and staff.

Overview of the CMDB Theme
The CMDB theme is comprised of over 150 primary and secondary faculty members with appointments in many of the academic departments and Centers at UAB including Cell, Developmental and Integrative Biology, Genetics, Biochemistry, Neurobiology, Medicine, Oral and Maxillofacial Surgery, Nutrition Sciences, Cardiovascular Disease, Clinical Immunology, Rheumatology, Pathology, Environmental Health Sciences, Psychiatry & Behavioral Neurobiology, Vision Sciences and Optometry. The scientific interests of the faculty are very diverse and interdisciplinary in nature. As such, the CMDB theme can provide students an individually tailored, comprehensive training program in cell, molecular, and developmental biology using modern tools and approaches in a wide range of model organisms. The research conducted by CMDB faculty addresses fundamental cellular and molecular questions that provide the basis for understanding and treating human disease.

In the first semester, all students accepted into the GBS program will complete a 14-week core course covering fundamentals in biochemistry, metabolism, genetics, molecular and cellular biology. After completion of the core GBS curriculum, CMDB students will complete a course entitled Cell Signaling.

In addition, starting early in the first semester each student will obtain research experience through three laboratory rotations that will be completed by the end of the first year. Laboratory rotations are for ten weeks and are an integral part of the first year curriculum. They are the first opportunity to truly experience what graduate level scientific research is all about. These rotations are highly structured and are meant for you to become acquainted with the laboratory and the mentor and to gain practical experience in a variety of the techniques and types of scientific questions being addressed within the different theme areas. At the end of each rotation the students will present their research in the form of a poster presentation that is open to the GBS community. After completion of the rotations, students choose a mentor and laboratory for their dissertation research.

In the second semester, CMDB students will complete a series of one month modules in areas related to cell, molecular and developmental biology that are in the general research and scientific interest of the individual student. The CMDB curriculum is tailored to the student’s research and scientific interests. As such, the student will be able to select from modules in the CMDB theme as well as from other GBS themes approved by the student’s mentor and the CMDB theme directors. The student must complete eight modules, and may select from any of the GBS 1st year course offerings. Additional course work may be required to fill gaps in the student’s knowledge based on the recommendation of the mentor and the student’s thesis committee.

All CMDB students must attend Methods and Scientific Logic, a journal club designed to demonstrate how to critically evaluate data and experimental design in the scientific literature and research, complete a course in Biostatistics and Bioethics, as well as conduct non-dissertation research in their selected laboratories. At the beginning of the second year, students will assemble a thesis committee in consultation with their mentors. This committee will be formed by anywhere between 4 and 6 members, 3 of which should be faculty associated with the CMDB theme.

In the second year, students continue non-dissertation laboratory research and take module course work to fulfill the requirements described above. By the beginning of the third year, CMDB students must complete their qualifying examination consisting of a written dissertation research proposal in the format of an NIH style grant and an oral defense. The examination will evaluate whether the student has gained a sufficiently broad knowledge necessary for successful academic research. To help in this process, the second year curriculum will include a course in scientific writing and grantsmanship with a mock NIH grant.
review session. After successful completion of the exam the proposal will be submitted to a funding agency (if applicable) for possible support.

After the second semester, all students must participate in a CMDB approved Departmental Seminar Series and a weekly journal club until completion of the doctoral degree.

The curriculum of each Ph.D. candidate usually requires five years of training and is individually tailored to the interests and needs of the student by the advisor and a graduate committee chosen by the student. The Ph.D. degree is awarded upon successful defense of your dissertation, which includes an oral presentation of original, creative scientific investigations, and a written dissertation which is expected to include published manuscripts or manuscripts in preparation. Because pursuit of the Ph.D. degree is a full-time activity, all graduate students are supported by monetary stipends and do not have any required teaching duties. The level of activity required does not permit outside jobs or excessive extracurricular activities. Continuous registration and satisfactory academic standing during all terms is required.

Cell, Molecular, and Developmental Biology Theme Faculty

The faculty listing for the Cell, Molecular, and Developmental Biology theme is located at http://services.medicine.uab.edu/facultydirectory/FacultyListingType.asp?FacultyTypeID=CMDB

Additional Information

<table>
<thead>
<tr>
<th>Deadline for Entry Term(s):</th>
<th>Refer to theme website for deadline information: http://www.uab.edu/cmdb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deadline for All Application Materials to be in the Graduate School Office:</td>
<td>Consult theme website for deadline information: http://www.uab.edu/cmdb</td>
</tr>
<tr>
<td>Number of Evaluation Forms Required:</td>
<td>Three</td>
</tr>
<tr>
<td>Entrance Tests</td>
<td>GRE</td>
</tr>
</tbody>
</table>

For detailed information see Web [http://www.uab.edu/gbs or contact:](http://www.uab.edu/gbs)

Dr. Alecia K. Gross
Associate Professor and CMDB Theme Director
agross@uab.edu (agross@uab.edu)

Dr. Candace Floyd
Associate Professor and CMDB Theme Co-Director
molsen@uab.edu (clfloyd@uab.edu)

Nan Travis
CMDB Theme Administrator II
205.934.1033 Phone
205.996.6749 Fax
ntravis@uab.edu

Course Descriptions - Cell, Molecular and Developmental Biology

Cell Signaling - This course covers major extracellular and intracellular signal transduction cascades that regulate animal development and physiology. The class meets every day for 2 hours and consists of two exams.

Cell and Molecular Aspects of Developmental Biology - The goal of this course is to provide an introduction to the fundamentals of vertebrate developmental biology. The course will consist of faculty lectures and research paper discussion groups covering a broad range of developmental issues from fertilization to organogenesis.

Developmental Neuroscience - The course will utilize the scientific literature and faculty lectures to cover a broad range of topics related to the mechanisms of building a brain. The topics covered range from neural induction in early development, to axonal guidance and synapse formation, to neuro-gial interactions in the adult nervous system. Grades will be based on two exams and student participation in class discussions.

Stem Cell Biology - This course will explore the derivation, manipulation, and differentiation of embryonic, fetal, and adult stem cells in both mice and humans. Topics to be discussed include stem cell self-renewal, teratoma formation, hematopoietic stem cells, neural stem cells, trans-differentiation, nuclear transfer, and reproductive and therapeutic cloning. The course will be a mixture of instructor lectures and interactive journal club style presentations from the current stem cell literature by the students. Students will be evaluated based upon their journal article presentations, participation in class discussions, quizzes, and attendance.

Development and Evolution – This course will cover the developmental mechanisms that drive evolutionary change and how body plans evolve through natural selection. The course consists of lectures and scientific literature discussions that will demonstrate developmental biology principles.

Skeletal Development and Disease - The primary goal of this course is to introduce graduate students to the basic and translational knowledge about development, maintenance and homeostasis of the mineralized tissues. Lectures in this course will focus on approaches and techniques that are utilized for understanding cellular and molecular mechanisms essential for the normal development, remodeling and patho-physiology of skeleton.

Mechanisms of Birth Defects - This class will provide an overview of the mechanisms of common birth defects. A review of the development of each organ system is followed by a discussion of molecular mechanisms leading to alterations in normal development. Genetic and environmental mechanisms are discussed. A recent paper on each topic is presented as part of the class. Depending on the number of students enrolled, each student will be required to present one or two papers.

Grantsmanship and Scientific Writing – The objective of the course is to teach students how to effectively write grant proposals. This course will provide hands on training in the preparation of a grant application and demonstrate effective strategies for assembling a successful proposal. With guidance from the faculty, the students will write a NIH style proposal on their dissertation research topic. After the proposal is complete, each grant will be reviewed in a mock NIH study section. Based on the comments from the study section, the student will revise the application and submit the proposal to his/her thesis committee as part of the qualifying examination for admittance into candidacy.

Laboratory Rotations. Concurrent with the first year of course work, each student will perform laboratory research with mentors of his/her choosing in any of the GBS themes. Laboratory rotations are meant help students become acquainted with the laboratory and the mentor and to gain practical experience in a variety of the techniques and types of scientific questions being addressed within the different theme areas.
Laboratory rotations last approximately ten weeks and each student will complete three rotations by the end of their first year. At the end of each rotation the students will present their research in the form of a poster. The performance in the laboratory and the poster presentation will be graded by the mentor of the laboratory and by two GBS faculty members respectively. A passing grade is required for all laboratory rotations. 1-6 hours.

Non-Dissertation Research. Laboratory research performed prior to admission to candidacy. 1-12 hours.

Dissertation Research. Prerequisite: Admission to candidacy. 1-12 hours.

CMDB Approved Seminar Series – All CMDB students must attend one of the weekly departmental based seminar series within the scientific interest of the student. The seminar series feature prominent speakers from both inside and outside of UAB and attendance is mandatory. Current approved seminar series include: Cell Biology, Neuroscience, Genetics, and Biochemistry. Additional seminar series may be included upon approval of CMDB and the mentor.

CMDB Journal Clubs - In the beginning of the second year until completion of the thesis defense, all CMDB students must participate in a journal club related to the student’s research interests and to the CMDB theme. The purpose of the journal club is to give students valuable experience in critical assessment of the scientific literature and to keep up-to-date on the research activities emerging from CMDB related research. Current journal clubs associated with the CMDB theme are: Autophagy and Cell Death, Cell Biology, Cell-Matrix Interactions, Cancer and Developmental Biology, and Stem Cell Biology. Additional journal clubs may be included upon approval of CMDB and the mentor.