NMT-Nuclear Medicine Technology

NMT 525. First Aid and Healthcare Provider CPR and AED. 1 Hour.
Knowledge and skills needed to perform basic first aid and CPR procedures for adult, child and infant victims according to the American Heart Association (AHA) Standards.

NMT 540. Physics in Biomedical Sciences. 3 Hours.
Physical concepts used in biology, human anatomy, physiology, as well as in medical diagnosis and treatment. Topics include mechanics, fluids, waves, heat, sound, optics, electricity & magnetism. Advanced topics include radiation, X-rays, MRI, and nuclear medicine.

NMT 601. Introduction to MRI Clinic. 2 Hours.
Overview of patient management, MRI screening and safety procedures, quality assurance procedures and FDA guidelines.

NMT 602. Introduction to Nuclear Medicine, Patient Care & Communication Skills. 3 Hours.
Overview of professional organizations and nuclear medicine; hospital organization; medical terminology; medical records; communication skills, health law and medical ethics; basic patient care theory.

NMT 605. Cross-Sectional Anatomy. 3 Hours.
Integration of the knowledge of gross anatomy with the identification and location of structures in cross-sectional images. Computed Tomography (CT) and Magnetic Resonance (MR).

NMT 610. Medical Radiation Physics. 4 Hours.
Overview of basic medical radiation physics concepts and experiments.

NMT 621. Nuclear Medicine Instrumentation I. 4 Hours.
Theory and experiments on radiation detection instrumentation; calibration; maintenance standards; practical uses of gaseous detectors, scintillation detectors, and multichannel analyzers; quality assurance testing for nuclear medicine instrumentation including GM detectors, ionization chambers and scintillation detectors.

NMT 622. NMT Instrumentation II. 3 Hours.
Applies computer fundamentals to the acquisition and processing of nuclear medicine patient data. Quality control of SPECT and PET camera systems.
Prerequisites: NMT 621 [Min Grade: C]

NMT 623. CT Instrumentation. 3 Hours.
Theoretical principles of Computed Tomography (CT); CT instrumentation, data acquisition, data processing, and image quality.
Prerequisites: NMT 605 [Min Grade: C]

NMT 624. Physics/Instrumentation of Nuclear Magnetic Resonance. 3 Hours.
Fundamental physical principles of nuclear magnetic resonance, including structure of atom, concept of resonance, Larmor frequency, gyromagnetic ratio, T1 and T2 and methods of generating magnetic fields.

NMT 631. Nuclear Medicine Anatomy & Physiology - Procedures I. 4 Hours.
Study of the utilization of nuclear medicine procedures including skeletal, respiratory, endocrine, gastrointestinal and genitourinary systems. Anatomy and relevant concepts in physiology are reviewed and applied to each procedure.
Prerequisites: NMT 601 [Min Grade: C]

NMT 632. Nuclear Medicine Anatomy & Physiology - Procedures II. 4 Hours.
Study of the utilization of nuclear medicine procedures including nuclear cardiology, oncology, central nervous and hematopoietic systems and applications of position emission tomography. Anatomy and relevant concepts in physiology are reviewed and applied to each procedure.
Prerequisites: NMT 631 [Min Grade: C]

NMT 633. Computed Tomography Procedures. 3 Hours.
Overview of CT positioning criteria, specific selections, and options in protocols. Understanding concepts in advanced CT including interventional imaging, positron emission tomography and special procedures.
Prerequisites: NMT 623 [Min Grade: C]

NMT 634. MRI Scanning and Sequence. 3 Hours.
Overview of basic MRI theory; imaging sequences, parameter optimizations, and imaging procedures, flow imaging, and MR spectroscopy.
Prerequisites: NMT 624 [Min Grade: C]

NMT 641. Regulations, Radiation Protection/Biology and Lab. 4 Hours.
Overview of principles and methods of radiation protection, radiation biology and ionizing radiation regulations.

NMT 653. Research Methodology and Publication Analysis. 3 Hours.
Perform scientific research, critically evaluate scientific literature, and write an abstract and scientific poster on a topic relevant to nuclear medicine technology.
Prerequisites: CDS 610 [Min Grade: C]

NMT 660. Radiopharmacy, Pharmacology & Lab. 3 Hours.
Overview of fundamentals of radiopharmacy and experiments including radionuclide generator design, elution and operation, labeling and quality control of Tc-99m labeled compounds, unit dose preparation; radiopharmaceutical design, IND process, MIRD, contrast media and pharmacology.
Prerequisites: NMT 610 [Min Grade: C]

NMT 675. Special Topics in Nuclear Medicine Technology. 1-4 Hour.
Faculty-led exploration of current topics and issues in nuclear medicine technology.

NMT 691. NMT Clinical Practice. 3-7 Hours.
Directed clinical practice: in vivo procedures; instrumentation quality control; radiopharmacy; applied radiation safety procedures.

NMT 694. Computed Tomography Clinical Practice. 10 Hours.
Directed clinical practice: CT instrumentation quality control; applied application of CT procedures.
Prerequisites: NMT 605 [Min Grade: C] and NMT 623 [Min Grade: C] and NMT 633 [Min Grade: C]

NMT 695. MRI Clinical Practice. 10 Hours.
Directed clinical practice: MRI instrumentation quality control; applied application of MRI procedures.
Prerequisites: NMT 602 [Min Grade: C] and NMT 605 [Min Grade: C] and NMT 624 [Min Grade: C] and NMT 634 [Min Grade: C]

Directed research for a non-thesis master of science degree project.

NMT 699. Thesis Research. 1-6 Hour.
Original research in nuclear medicine technology and interpretation of results. Demonstrates student's acquaintance with literature of field and competency in proper selection and execution of research methodology.
Prerequisites: GAC M