Genetics and Genomic Sciences

The UAB Undergraduate Program in Genetics and Genomic Sciences (GGS) is an interdisciplinary major between the Department of Genetics in the Heersink School of Medicine and the Department of Biology in the College of Arts and Sciences. Genetics refers to study of genes and their roles in inheritance, while genomics describes investigations of large sets of genes or gene products, up to and including the entire genome. Genetics is one of the most important fields in biological sciences, and affects all aspects of our lives. There have been major breakthroughs in the fields of genetics and genomics during the last decade, and this has created a significant need for individuals with training in these cutting-edge disciplines.

The central goals of the GGS undergraduate major is to provide students with a strong educational and research background and prepare them to become accomplished research scientists, clinicians, and health-care professionals who will be equipped with the knowledge to contribute to future discoveries in genetics and genomics. Our faculty, through their strong academic and research experience and expertise in the fields of genetics and genomic sciences, will help students accomplish these goals through the following mechanisms:

- **Academic coursework** - students are provided with a strong academic and intellectual foundation through coursework in biology, chemistry, mathematics, physics, genetics, and genomics.
- **Authentic research experience** – Qualified students are offered opportunities to perform laboratory research under the direction of faculty mentors to learn cutting-edge experimental approaches and innovative methods in genetics and genomics research.
- **Mentoring and career guidance** - students are provided with academic and career counseling to identify graduate and professional programs, or jobs most suited to their interests.

Admissions

The GGS program is designed for graduating high school seniors and college freshmen or sophomores with a strong academic record and the motivation to pursue a career in the biomedical sciences.

Advising and Information

Dr. Violetta Czaja
Co-Director, Genetics and Genomic Sciences
Assistant Professor, Department of Genetics
(205) 934-3684
wczaja@uab.edu

Dr. Shahid K Mukhtar
Co-Director, Genetics and Genomic Sciences
Assistant Professor, Department of Biology
(205) 934-8335
smukhtar@uab.edu

Bachelor of Science in Genetics and Genomic Sciences

For a BS degree in Genetics and Genomic Sciences, you must satisfactorily complete a minimum of 120 semester hours including the following:

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY 123 & 123L Introductory Biology I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>BY 124 & 124L Introductory Biology II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CH 115 & 116 General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CH 117 & 118 General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PHL 116 Bioethics</td>
<td>3</td>
</tr>
<tr>
<td>BY 210 Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BY 330 Cell Biology</td>
<td>3</td>
</tr>
<tr>
<td>CH 235 & 236 Organic Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MA 125 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>or MA 225 Calculus I - Honors</td>
<td></td>
</tr>
<tr>
<td>CH 237 & 238 Organic Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MA 180 Introduction to Statistics</td>
<td>3</td>
</tr>
<tr>
<td>or PUH 250 Biostatistics</td>
<td></td>
</tr>
<tr>
<td>CH 460 Fundamentals of Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>PSDO 200 Introduction to Research</td>
<td>1</td>
</tr>
<tr>
<td>PH 201 & 201L College Physics I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>PH 202 & 202L College Physics II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>GRD 300 Introduction to the Health Professions</td>
<td>1</td>
</tr>
</tbody>
</table>

Genetics and Genomic Sciences courses

- GGSC 310 Genome Structure and Organization
- GGSC 320 Colloquium in Genetics and Genomics Science
- GGSC 410 Genetic Basis of Human Disease
- GGSC 420 Applications of Bioinformatics
- GGSC 499 GGSC Program Final (Taken last term)

GGS/BY Electives (select at least 2 from the list below)

- GGSC 415 Aquatic Animal Models of Human Disease
- GGSC 435 Zebrafish as a Model for Biomedical Research
- GGSC 485 Research Techniques for Aquatic Animals of Human Diseases
- GGSC 470 Principles of Pharmacogenetics
- GGSC 490 Model Systems for Genetics Disorders
- GGSC 491 Personalized Genomic Medicine
- BY 431 Principles of DNA Technology

Capstone Requirement (Choose one of the following)

- GGSC 490 Model Systems for Genetics Disorders
- GGSC 491 Personalized Genomic Medicine
- GGSC 492 Undergraduate Research Seminar in Genetics and Genomic Sciences
- GGSC 493 Honors Research Seminar in Genetics and Genomic Sciences

Total Hours 75
1 A minimum GPA of 2.0 is required
2 GGS majors must take the Colloquium in Genetics and Genomics course (GGSC 320; 1 credit hour per semester) at least 2 times.
3 Please contact the program director to discuss the Capstone requirements.

Courses

GGSC 101. Your Genome. 3 Hours.
Advances in genetics and genomics, and especially the sequencing of the human genome, are making it possible to customize medical care to the specific needs of an individual. This course will introduce students to basic concepts in genetics and genomic sciences, as well as familiarize them with the various tools available that enable personalization of healthcare. Students from a wide range of disciplines with minimum scientific background can participate, and there is no required textbook. This course is intended for non-Genetics and Genomic Sciences majors.

GGSC 201. Research Experience in Molecular Genetics. 3 Hours.
A course-based authentic research experience with genomic technologies such as CRISPR-Cas9 (programmable nucleases) to make genetic modifications in a model organism.

GGSC 250. Special Topics in Genetics and Genomics Sciences. 1-3 Hour.
Covers different topics including fundamentals and applications in the fields of genetics and genomics.

GGSC 310. Genome Structure and Organization. 3 Hours.
This course will cover the general concepts of genomics including gene structure and function, genomic technologies and their applications, and comparative genomics.

GGSC 320. Colloquium in Genetics and Genomics Science. 1 Hour.
Faculty-led seminar course that exposes students to cutting edge research topics and career opportunities in the fields of genetics and genomics. Students will read assigned articles and be prepared for discussion.

GGSC 330. Principles and Practice of Precision Medicine. 3 Hours.
Advances in genetics and genomics, and especially the sequencing of the human genome, are making it possible to customize medical care to the specific needs of an individual. This course will introduce students to basic concepts in genetics and genomic sciences, as well as familiarize them with the various tools available that enable personalization of healthcare. Students from a wide range of disciplines with minimum scientific background can participate, and there is no required textbook. This course is intended for non-Genetics and Genomic Sciences majors.

GGSC 355. Independent Study in Genetics and Genomics Sciences.
In-depth study of fundamentals and applications in the fields of genetics and genomics under the direct supervision of a faculty member. Permission of Instructor Only.

GGSC 380. Undergraduate Research in Genetics and Genomics Sciences. 1-3 Hour.
Research project for non-GGS Honors students under the supervision of a faculty sponsor. May be repeated for a total of 9 semester credit hours in a 2 or 3 semester period.
GGSC 390. Honors Research in Genetics and Genomics Sciences. 1-3 Hour.
Research project for GGS Honors students under the supervision of a faculty sponsor. May be repeated for a total of 9 semester credit hours in a 2 or 3 semester period.

GGSC 410. Genetic Basis of Human Disease. 3 Hours.
This course will focus on the medical applications of genetics and genomics technologies. Topics covered include, but are not limited to major forms of chromosomal abnormalities, mutations and genetic disorders, genetic risk assessment and population genetics, and genomic approaches to diagnosis.
Prerequisites: BY 210 [Min Grade: C] and CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and (GGSC 310 [Min Grade: C] or BY 311 [Min Grade: C])

GGSC 415. Aquatic Animal Models of Human Disease. 3 Hours.
This course will cover the basic anatomy, biology, life history, husbandry, and research applications for a variety of aquatic organisms used as animal models of human disease in biomedical research. Species discussed will include zebrafish, Medaka, Xiphorous, Onchorynchus, Xenopus, and Axolotls.
Prerequisites: CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and BY 210 [Min Grade: C] and GGSC 310 [Min Grade: C]

GGSC 420. Applications of Bioinformatics. 3 Hours.
Introduction to computational tools and bioinformatics databases used in the fields of genetics and genomics. This course will cover a wide variety of different bioinformatics applications, which will be taught through use of available on-line bioinformatics resources. Topics covered include large-scale genomic databases, sequence analysis systems, protein sequence analysis, structural bioinformatics, protein folding, and homology modeling.
Prerequisites: BY 210 [Min Grade: C] and CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and (GGSC 310 [Min Grade: C] or BY 311 [Min Grade: C])

GGSC 435. Zebrafish as a Model for Biomedical Research. 3 Hours.
This course will focus on the biology, husbandry, and management of zebrafish used as an animal model of human disease in biomedical research. Topics will include anatomy, physiology, systems design, water quality management, behavior and enrichment, spawning and larviculture, nutrition and live feeds, diseases, quarantine, biosecurity, and regulatory compliance.
Prerequisites: CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and BY 210 [Min Grade: C] and GGSC 310 [Min Grade: C]

GGSC 465. Research Techniques for Aquatic Animals of Human Diseases. 4 Hours.
This course will focus on the techniques and procedures used for research with aquatic animal models of human disease. Lecture and lab approaches are used.
Prerequisites: GGSC 415 [Min Grade: C] or GGSC 435 [Min Grade: C]

GGSC 470. Principles of Pharmacogenetics. 3 Hours.
Most of the drugs that we use today were developed with the assumption that the same drug will work equally well in all the patients that have the same disease. However, there is considerable variability between individual patients - both in the therapeutic response and the adverse effects of the same drug - that is largely determined by the differences in their genotypes. Pharmacogenetics and pharmacogenomics study the genetic determinants of drug response, with the goal to identify genetic variants that can be used to predict the efficacy of a particular drug in a particular patient and to avoid adverse drug reactions. This will ultimately enable implementation of personalized treatment options, by selecting the drugs that will have the best efficacy and the least toxicity for each individual patient. This course will introduce students to the basic principles of pharmacogenetics, demonstrate examples of drug/genotype interactions, highlight the available pharmacogenetic resources, and discuss the potential benefits, as well as limitations and challenges of pharmacogenetics and personalized medicine.
Prerequisites: CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and BY 210 [Min Grade: C] and GGSC 310 [Min Grade: C]

GGSC 490. Model Systems for Genetics Disorders. 3 Hours.
Invertebrate and non-human vertebrate species are commonly used in scientific research work to provide significant insights into human genetic processes and disease. This course focuses on the different methods and strategies by which researchers use these systems for genetic and genomic analyses of human biology and relevant disorders. Model organisms covered include, but are not limited to nematodes (C. elegans), fruit flies (Drosophila sp.), zebrafish (Danio rerio), and mice (Mus musculus). Capstone course (GGS majors). Students that enroll in this class as their capstone experience are expected to do writing or presentation assignments to fulfill their capstone requirement.
Prerequisites: BY 210 [Min Grade: C] and CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and (GGSC 310 [Min Grade: C] or BY 311 [Min Grade: C])

GGSC 491. Personalized Genomic Medicine. 3 Hours.
Significant developments in the fields of genetics and genomics are making it possible to tailor medical care to the specific needs of patients. New diagnostic tests, up to and including whole genome sequencing, provide increasingly powerful tools for the identification of the genetic basis of both rare and common disorders. Better understanding of the causes of disease are permitting drugs to be developed that precisely target disease mechanisms, increasing the efficacy and avoiding side effects. These and other new advanced are leading to major changes in healthcare delivery and provide the consumer with new opportunities and complex choices. This course will focus on exploring state-of-the-art genetic, genomic, and informatic tools now available to enable personalization of healthcare. Capstone course (GGS majors). Students that enroll in this class as their capstone experience are expected to do writing or presentation assignments to fulfill their capstone requirement.
Prerequisites: BY 210 [Min Grade: C] and CH 117 [Min Grade: C] and CH 118 [Min Grade: C] and (GGSC 310 [Min Grade: C] or BY 311 [Min Grade: C])
GGSC 492. Undergraduate Research Seminar in Genetics and Genomic Sciences. 3 Hours.

Elective course for non-GGS Honors students who perform at least two semesters of GGSC 380. Over the course of the semester, students will learn how to develop and complete a paper or thesis on their research work while working closely with a supervising faculty member. In addition, the course will prepare them to present their research findings in a seminar format. Through these activities, students will develop effective skills in both written and oral scientific communication. Students will present a formal seminar on their research at the end of the course. This course can be taken the first semester following the completion of the research project, or alternatively can be taken concurrently with Undergraduate Research in Genetics and Genomic Sciences (GGSC 380) during the student’s final semester of supervised research. Designated a Capstone course (GGS majors).

GGSC 493. Honors Research Seminar in Genetics and Genomic Sciences. 3 Hours.

All GGS Honors students are required to take this weekly course. Over the course of the semester, students will learn how to develop and complete a paper or thesis on their research work while working closely with a supervising faculty member. In addition, the course will prepare them to present their research findings in a seminar format. Through these activities, students will develop effective skills in both written and oral scientific communication. Students will present a formal seminar on their research at the end of the course. This course can be taken the first semester following the completion of the research project, or alternatively can be taken concurrently with Honors Research in Genetics and Genomic Sciences (GGSC 390) during the student’s final semester of supervised research. Can be taken as a Capstone course (GGS majors).

GGSC 499. GGSC Program Final. 0 Hours.

This 0-credit hour course includes two self-paced components: One career counseling recorded video and data collection from students via CV submission and an automated exit interview for documenting learning essentials of GGSC students towards GGSC program evaluation. Students will register for GGSC 499 during their last semester as a requirement for graduation with GGSC major. The GGSC program director(s) will be the faculty instructor(s) with assistance from the GGSC program manager and student advisor.