Mechanical Engineering

Interim Chair: Kathy Lu, PhD

Degree Offered: Bachelor of Science in Mechanical Engineering

Accreditation: The Bachelor of Science in Mechanical Engineering degree program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission's General Criteria and Program Criteria for Mechanical and Similarly Named Engineering Programs.

Website: https://www.uab.edu/engineering/me/undergraduate

Program Director: Pasquale Cinnella, PhD

Email: pc1@uab.edu

Phone: 205-934-8460

Mechanical engineering is a broad-based discipline that embraces the two major areas of mechanical systems and thermal systems. With an understanding of the phenomena associated with these topics, mechanical engineers conceive and design a wide variety of devices, machines, and systems to meet the needs and desires of a modern economy. Mechanical engineers also engage in applied research, product development, and project management. Mechanical engineers have a primary role in addressing the problems related to manufacturing, productivity, and safety in the workplace; supply and efficient utilization of energy; transportation; and human rehabilitation.

In addition to Blazer Core, the mechanical engineering curriculum includes a core of fundamental engineering coursework and advanced courses in thermodynamics, fluid mechanics, heat transfer, mechanics of machinery, and mechanical design. The program also includes courses in mathematics, calculus-based physics, and chemistry. Laboratory experiences are provided in each area to illustrate the application of theory in engineering practice. With additional coursework, the mechanical engineering program can also be utilized as a pre-health curriculum.

Please refer to the School of Engineering overview for policies regarding admission; change of major; transfer credit; transient status; dual degree programs; reasonable progress; academic warning, probation, and suspension; reinstatement appeals; and graduation requirements.

Vision

To be a nationally and internationally recognized research-oriented mechanical engineering program – a first choice for undergraduate and graduate education.

Mission

To prepare students to be immediately productive and able to adapt to and lead in a rapidly changing environment and to create and apply knowledge for the benefit of society.

Program Educational Objectives

The Educational Objectives of the Mechanical Engineering undergraduate program are the following:

- Graduates will meet or exceed the expectations of their employers in mechanical engineering or any other career path they choose;
- Graduates will pursue continuing education opportunities in their chosen field through a variety of means, such as professional development training and advanced education;
- Graduates will pursue leadership positions in their selected profession and/or communities.

Student Outcomes

Upon completion of the BSME degree program, our graduates will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Bachelor of Science in Mechanical Engineering

Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blazer Core Requirements</td>
<td>43</td>
</tr>
<tr>
<td>CH 115 General Chemistry I & 115R and General Chemistry I Recitation & CH 116 and General Chemistry I Laboratory</td>
<td></td>
</tr>
<tr>
<td>EH 101 English Composition I</td>
<td></td>
</tr>
<tr>
<td>EH 102 English Composition II</td>
<td></td>
</tr>
<tr>
<td>EGR 103 Computer Aided Graphics and Design</td>
<td></td>
</tr>
<tr>
<td>EGR 200 Introduction to Engineering 1</td>
<td></td>
</tr>
<tr>
<td>MA 125 Calculus I 1</td>
<td></td>
</tr>
<tr>
<td>PH 221 General Physics I & 221L and General Physics Laboratory I & 221R and General Physics I Recitation</td>
<td></td>
</tr>
<tr>
<td>PH 222 General Physics II & 222L and General Physics Laboratory II & 222R and General Physics II - Recitation</td>
<td></td>
</tr>
</tbody>
</table>

Academic Foundations: Reasoning

Thinking Broadly: History & Meaning

Thinking Broadly: Creative Arts

Thinking Broadly: Humans & Their Societies
Mechanical Engineering

City as a Classroom

Other Required Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 210</td>
<td>Statics</td>
</tr>
<tr>
<td>CE 220</td>
<td>Mechanics of Solids</td>
</tr>
<tr>
<td>CE 221</td>
<td>Mechanics of Solids Laboratory</td>
</tr>
<tr>
<td>CE 395</td>
<td>Engineering Economics</td>
</tr>
<tr>
<td>CH 117</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>& 117R</td>
<td>General Chemistry II Recitation</td>
</tr>
<tr>
<td>EE 312</td>
<td>Electrical Systems</td>
</tr>
<tr>
<td>EGR 150</td>
<td>Computer Methods in Engineering</td>
</tr>
<tr>
<td>EGR 265</td>
<td>Math Tools for Engineering Problem Solving</td>
</tr>
<tr>
<td>MA 126</td>
<td>Calculus II</td>
</tr>
<tr>
<td>& 215R</td>
<td>Dynamics Recitation</td>
</tr>
<tr>
<td>ME 215</td>
<td>Thermodynamics I</td>
</tr>
<tr>
<td>ME 221</td>
<td>Thermodynamics II</td>
</tr>
<tr>
<td>ME 321</td>
<td>Introduction to Fluid Mechanics</td>
</tr>
<tr>
<td>ME 322</td>
<td>Introduction to Heat Transfer</td>
</tr>
<tr>
<td>ME 360</td>
<td>Introduction to Mechatronic Systems Engineering</td>
</tr>
<tr>
<td>ME 361</td>
<td>Thermo-Fluids Systems</td>
</tr>
<tr>
<td>& 361L</td>
<td>and Thermo-Fluids Systems Laboratory</td>
</tr>
<tr>
<td>ME 364</td>
<td>Linear Algebra and Numerical Methods</td>
</tr>
<tr>
<td>ME 370</td>
<td>Kinematics and Dynamics of Machinery</td>
</tr>
<tr>
<td>ME 371</td>
<td>Machine Design</td>
</tr>
<tr>
<td>ME 461</td>
<td>Mechanical Systems</td>
</tr>
<tr>
<td>& 461L</td>
<td>and Mechanical Systems Laboratory</td>
</tr>
<tr>
<td>ME 498</td>
<td>Capstone Design Project I</td>
</tr>
<tr>
<td>ME 499</td>
<td>Capstone Design Project II</td>
</tr>
<tr>
<td>MSE 280</td>
<td>Engineering Materials</td>
</tr>
<tr>
<td>MSE 401</td>
<td>Materials Processing</td>
</tr>
</tbody>
</table>

Math/Science Elective

Choose one course from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY 101</td>
<td>Topics in Contemporary Biology</td>
</tr>
<tr>
<td>BY 108</td>
<td>Human Population and the Earth’s Environment</td>
</tr>
<tr>
<td>BY 123</td>
<td>Introductory Biology I</td>
</tr>
<tr>
<td>& 123L</td>
<td>and Introductory Biology I Laboratory</td>
</tr>
<tr>
<td>CH 235</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>& 235R</td>
<td>and Organic Chemistry I Recitation</td>
</tr>
<tr>
<td>ES 101</td>
<td>Physical Geology</td>
</tr>
<tr>
<td>MA 180</td>
<td>Introduction to Statistics</td>
</tr>
<tr>
<td>MA 360</td>
<td>Scientific Programming</td>
</tr>
<tr>
<td>MA 361</td>
<td>Mathematical Modeling</td>
</tr>
<tr>
<td>MA 444</td>
<td>Vector Analysis</td>
</tr>
<tr>
<td>MA 445</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MA 453</td>
<td>Fourier Analysis</td>
</tr>
<tr>
<td>PH 223</td>
<td>General Physics III: Thermodynamics & Quantum</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
</tr>
</tbody>
</table>

Residency Requirement

In addition to UAB's residency requirement, to earn a bachelor of science in mechanical engineering from UAB, the program requires that students complete the following courses at UAB:

Requirements

Any two of the following:

- ME 322 Introduction to Heat Transfer
- ME 360 Introduction to Mechatronic Systems Engineering
- ME 370 Kinematics and Dynamics of Machinery
- ME 371 Machine Design
- ME 498 Capstone Design Project I
- ME 499 Capstone Design Project II

Total Hours

12

Please refer to the School of Engineering overview for policies regarding admission; change of major; transfer credit; transient status; dual degree programs; reasonable progress; academic warning, probation, and suspension; reinstatement appeals; and graduation requirements.

Curriculum for the Bachelor of Science in Mechanical Engineering (BSME)

<table>
<thead>
<tr>
<th>Year</th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>CH 115 & 115R & CH 116</td>
<td>4</td>
<td>EGR 150 & 150 & PH 211 & 211R</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGR 200 & 200L</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EH 101 & 101L</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA 125 & 125L</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA 445</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hours

14 15
Mechanical Engineering

Courses

ME 011. Undergraduate Internship in ME. 0 Hours.

Engineering internship experience in preparation for the student's intended career. Students in a university recognized cooperative education experience should register for COP 011 or COP 012.

ME 102. Engineering Graphics. 2 Hours.

Basic concepts in technical sketching, computer-aided drawing and design, projections, sections, and dimensioning.

Prerequisites: MA 105 [Min Grade: C](Can be taken Concurrently) or MA 106 [Min Grade: C](Can be taken Concurrently) or MA 107 [Min Grade: C](Can be taken Concurrently) or MA 125 [Min Grade: C](Can be taken Concurrently) or MA 225 [Min Grade: C]

ME 103. Drawing, Design and Measurement for Industrial Distribution. 3 Hours.

Technical sketching and reading of engineering drawings and analysis of systems involving human performance. For non-engineering majors. Not available for credit toward engineering major.

ME 215. Dynamics. 3 Hours.

Prerequisites: CE 210 [Min Grade: C]

ME 215R. Dynamics Recitation. 0 Hours.

An application-based course designed to reinforce concepts from ME 215.

ME 241. Thermodynamics I. 3 Hours.

Thermodynamic definitions, properties of a pure substance, ideal, and real gases, work, and heat. Fundamental laws of thermodynamics, entropy, reversible cycles, and irreversibility.

Prerequisites: PH 221 [Min Grade: C] and (CH 115 [Min Grade: C] or CH 125 [Min Grade: C]) and MA 126 [Min Grade: C](Can be taken Concurrently) or MA 226 [Min Grade: C](Can be taken Concurrently)

ME 241R. Thermodynamics Recitation. 0 Hours.

An application-based course designed to reinforce concepts from ME 241.

ME 242. Thermodynamics II. 3 Hours.

Application of thermodynamic principles to engineering systems; vapor power cycles; gas turbine cycles; Otto and Diesel cycles; refrigeration cycles; mixtures of ideal gases; psychrometrics.

Prerequisites: ME 241 [Min Grade: D] and EGR 150 [Min Grade: D] and (MA 126 [Min Grade: C] or MA 226 [Min Grade: C])

ME 251. Introduction to Thermal Sciences. 2 Hours.

Introduction to thermodynamics and heat transfer for non-mechanical engineering majors.

Prerequisites: (MA 126 [Min Grade: C] or MA 226 [Min Grade: C]) and PH 221 [Min Grade: C]

ME 302. Overview of Mechanical Components. 3 Hours.

An introduction to statics, dynamics, strength of materials, and engineering design. Transformation of energy, thermodynamics, heat transfer, and fluid mechanics. For non-engineering majors. Not available for credit toward engineering major.

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 210</td>
<td>3 CE 220</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CH 117</td>
<td>3 CE 221</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& 117R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGR 265²</td>
<td>4 EH 102³</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 241</td>
<td>3 ME 215</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& 241R</td>
<td>& 215R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH 222</td>
<td>4 ME 242</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>& 222L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blazer Core: Reasoning³</td>
<td>3 ME 371</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blazer Core: Creative Arts³</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours: 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 EGR 200 preferred; other FYE courses accepted
2 Only substitute MA 227 and MA 252 for EGR 265 and the Math/Science elective
3 Refer to Blazer Core as specific for engineering majors
4 Students must choose from the following: BY 101, BY 108, BY 123, CH 235, ES 101, MA 180, MA 360, MA 361, MA 444, MA 445, MA 453
5 Students must choose one course from each area:
 - Mechanical Systems: ME 430, ME 431, ME 432, ME 464, ME 475, ME 477, ME 478, ME 480
 - Thermal Fluids: ME 411, ME 421, ME 445, ME 447, ME 454, ME 455, ME 456
 - Computer-Aided Engineering content: ME 421, ME 456, ME 464

* Satisfies Blazer Core: Scientific Inquiry
% Satisfies Blazer Core: Writing
Satisfies Blazer Core: Communicating in a Modern World
* Satisfies Blazer Core: Quantitative Literacy
$ CE 280 preferred, other City as a Classroom courses accepted
ME 215. Introduction to Fluid Mechanics. 3 Hours.
Fluid properties, fluid statics, fluid in motion (control volume method), pressure variation in flowing fluids (Bernoulli equation), principles of momentum and energy transport, dimensional analysis and similitude, internal flow and external flow.
Prerequisites: ME 241 [Min Grade: D] and (MA 227 [Min Grade: D] and MA 252 [Min Grade: D] or EGR 265 [Min Grade: D]) and CE 210 [Min Grade: D] and EGR 150 [Min Grade: D]

ME 322. Introduction to Heat Transfer. 3 Hours.
Fundamentals of heat transfer and their application to practical problems, including steady and transient heat conduction, external and internal forced convection, natural convection and radiation.
Prerequisites: ME 321 [Min Grade: D]

ME 360. Introduction to Mechatronic Systems Engineering. 3 Hours.
Prerequisites: ME 215 [Min Grade: D] and ME 364 [Min Grade: D]

ME 361. Thermo-Fluids Systems. 3 Hours.
Pressure, temperature, fluid flow, and heat transfer instrumentation and their application to measurements of mass, heat, and momentum transport, flow characterization, heat engine and refrigeration cycles, and other thermal-fluids experiments. Experimental uncertainty analysis. Writing proficiency is required. ME 361L must be taken concurrently.
Prerequisites: ME 242 [Min Grade: D] (Can be taken Concurrently) and ME 322 [Min Grade: D] (Can be taken Concurrently)

ME 361L. Thermo-Fluids Systems Laboratory. 0 Hours.
Lab component for ME 361 Thermo-Fluids Systems. ME 361 must be taken concurrently.

ME 364. Linear Algebra and Numerical Methods. 3 Hours.
Linear equations and matrices, real vector bases, matrix decompositions, linear transformations; determinants, eigenvalues, eigenvectors; numerical methods for linear systems of equations, integration, ordinary differential equations; approximation, interpolation, least squares fits.
Prerequisites: (MA 227 [Min Grade: D] and MA 252 [Min Grade: D] or EGR 265 [Min Grade: D]) and EGR 150 [Min Grade: D]

ME 370. Kinematics and Dynamics of Machinery. 3 Hours.
Displacement, velocity and acceleration analysis, synthesis and design of linkages and mechanisms for various engineering applications on the basis of motion requirements. Static and dynamic force analysis of linkages, balancing of rotors and reciprocating machines. Significant consideration is given to designing geometry of gear sets: spur, helical, worm, and bevel gears. Analysis of planetary gear sets and drivetrains completes the course. Computer workshops support the learning process of main technical components.
Prerequisites: (EGR 103 [Min Grade: D] or ME 102 [Min Grade: D]) and ME 215 [Min Grade: D]

ME 371. Machine Design. 3 Hours.
Body stress, deflection and fatigue strength of machine components. Failure theories, safety factors and reliability, surface damage. Application to the design of gears, shafts, bearings, welded joints, threaded fasteners, belts and chains, keys, pins, springs, as well as mechanical design and selection of other machine components. Software applications, design projects, and exposure to hardware and systems are used to reinforce concepts.
Prerequisites: CE 220 [Min Grade: D] and EGR 150 [Min Grade: D] and ME 215 [Min Grade: D]

ME 411. Intermediate Fluid Mechanics. 3 Hours.
Applications of fluid dynamic principles to engineering flow problems such as turbo-machinery flow and one-dimensional compressible flow. Vorticity, potential flow, viscous flow, Navier-Stokes solutions, and boundary layers.
Prerequisites: ME 321 [Min Grade: D] and ME 364 [Min Grade: D]

ME 421. Introduction to Computational Fluid Dynamics Basics. 3 Hours.
Governing equations for fluid flows, classifications of flow regimes, and approaches to analyze fluid flow problems. Introduction to Computational Fluid Dynamics (CFD), mesh generation, boundary conditions, numerical solution of equations governing fluid flows, and visualization. Hands-on exercises using a commercial CFD solver.
Prerequisites: ME 321 [Min Grade: D]

ME 430. Vehicular Dynamics. 3 Hours.
Introduction to the fundamentals of mechanics and analytical methods for modeling vehicle dynamics and performance. Topics include tire-road interaction modeling, vehicle longitudinal dynamics and traction performance, lateral dynamics, handling, stability of motion and rollover, as well as contribution of the drivetrain system, steering system and suspension configurations to the dynamics of a vehicle. Software applications, projects, and exposure to hardware and systems are used to reinforce concepts.
Prerequisites: ME 215 [Min Grade: D]

ME 431. Introduction to Vehicle Drive Systems Engineering. 3 Hours.
Engineering fundamentals of mechanical and mechatronic, hybrid-electric, and electric drive systems. Applications to passenger cars and commercial vehicles. Drive system and component design, including main clutches and torque converters, transmissions, transfer cases, and drive axles. Introduction to plug-in hybrid-electric vehicles.
Prerequisites: ME 215 [Min Grade: D] and ME 370 [Min Grade: D] (Can be taken Concurrently)

ME 432. Introduction to Electric and Hybrid Vehicle Engineering. 3 Hours.
Introduction to fully electric and hybrid vehicle engineering. Mechatronic system and component design. Batteries and energy storage devices. Plug-in hybrid electric vehicles.
Prerequisites: ME 215 [Min Grade: D] and ME 360 [Min Grade: D] (Can be taken Concurrently)
ME 445. Combustion. 3 Hours.
Evaluation of the impact of fuel characteristics and operating conditions on the performance of coal-fired electric utility steam-raising plant and the prospects for continued reliance on coal as fuel for electric power generation. The phenomena emphasized are the behavior of turbulent jets; ignition, devolatilization and combustion of coal particles; radiative heat transfer and the effect of ash deposits on heat transfer; formation of air pollutants and their removal from combustion products; integrated gasification combined cycle; and capture and sequestration of carbon dioxide.
Prerequisites: ME 242 [Min Grade: D] and ME 322 [Min Grade: D]

ME 447. Internal Combustion Engines. 3 Hours.
Fundamentals of reciprocating internal combustion engines: engine types, engine components, engine design and operating parameters, thermochemistry of fuel-air mixtures, properties of working fluids, ideal models of engine cycles, engine operating characteristics, gas-exchange processes, fuel metering, charge motion within the cylinder, combustion in spark-ignition and compression ignition engines.
Prerequisites: ME 215 [Min Grade: D] and ME 242 [Min Grade: D]

ME 454. Heating, Ventilating and Air Conditioning. 3 Hours.
Fundamentals and practice associated with heating, ventilating, and air conditioning; study of heat and moisture flow in structures, energy consumption, and design of practical systems.
Prerequisites: ME 242 [Min Grade: D] and ME 322 [Min Grade: D]

ME 455. Thermal-Fluid Systems Design. 3 Hours.
Comprehensive design problems requiring engineering decisions and code/Standard compliance. Emphasis on energy system components: piping networks, pumps, heat exchangers. Includes fluid transients and system modeling.
Prerequisites: ME 242 [Min Grade: D] and ME 322 [Min Grade: D]

ME 456. Building Energy Modeling and Analysis. 3 Hours.
Computer modeling of energy use and thermal comfort in buildings using several software tools. Interpretation and analysis of the results. Implementing energy efficiency measures in the model and studying the effects on energy use.
Prerequisites: ME 242 [Min Grade: D] and ME 322 [Min Grade: D]

ME 461. Mechanical Systems. 3 Hours.
This course concentrates on main technical principles and aspects of mechanical systems design. The course also provides fundamental knowledge on test equipment and experimental techniques for experimenting on main technical principles of mechanical design. This course discusses data acquisition systems and signal conditioning, and design of experiments. Writing proficiency is required. ME 461L must be taken concurrently.
Prerequisites: CE 220 [Min Grade: D] and ME 215 [Min Grade: D]

ME 461L. Mechanical Systems Laboratory. 0 Hours.
Lab Component of ME 461 Mechanical Systems. ME 461 must be taken concurrently.

ME 464. Introduction to Finite Element Method. 3 Hours.
Prerequisites: CE 220 [Min Grade: D] and ME 364 [Min Grade: D]

ME 475. Mechanical Vibrations. 3 Hours.
Prerequisites: (MA 227 [Min Grade: D] and MA 252 [Min Grade: D] or EGR 265 [Min Grade: D]) and ME 215 [Min Grade: D]

ME 477. Systems Engineering. 3 Hours.
Exposure to the field of systems engineering, mission design, requirements development, trade studies, project life cycle, system hierarchy, risk analysis, cost analysis, team organization, design fundamentals, work ethics, compare and evaluate engineering alternatives, systems thinking. Registration is restricted to junior or higher standing.

ME 478. Automated Manufacturing. 3 Hours.
Introduction to automated manufacturing technology. Components of automated systems (controllers, sensors and actuators) and automated manufacturing sub-systems (3D printer, CNC, robot and computer vision) will be studied in a lecture/lab environment with hands on activities.
Prerequisites: (EGR 103 [Min Grade: D] or ME 102 [Min Grade: D]) and EGR 150 [Min Grade: D]

ME 480. Instrumentation and Measurements. 3 Hours.
Thorough exploration of fundamental measurement concepts and techniques for data acquisition and validation. Explanation of important selection criteria for the identification and configuration of commercially available data acquisition devices. Students will get hands-on experience following best practices for data acquisition (high speed vs low speed) relevant to their field of study or career. Many types of sensors, their underlying technology, and measurement techniques will be discussed (i.e. accelerometers, load cells, Digital Image Correlation, etc.) to demonstrate best practices for sensor selection for a wide range of specialized applications. Registration is restricted to junior or higher standing.

ME 489. Undergraduate Research in Mechanical Engineering. 1-6 Hour.
Undergraduate research experiences in mechanical engineering.
Prerequisites: (EGR 194 [Min Grade: D] and EGR 111 [Min Grade: D]) or HC 111 [Min Grade: D] and (MA 125 [Min Grade: C] or MA 225 [Min Grade: C]) and PH 221 [Min Grade: C](Can be taken Concurrently)

ME 490. Special Topics in Mechanical Engineering. 1-3 Hour.
Special Topics in Mechanical Engineering.

ME 491. Individual Study in Mechanical Engineering. 1-6 Hour.
Individual Study in Mechanical Engineering.

ME 494. Mechanical Engineering Seminar. 1 Hour.
Required for ME undergraduate Honors Program students. Presentations by students, faculty, and guests regarding current research.

ME 496. Honors Research. 1-6 Hour.
Research opportunities for undergraduate students in the Mechanical Engineering Honors Program.
Prerequisites: EGR 301 [Min Grade: C]
ME 498. Capstone Design Project I. 3 Hours.
Capstone design project: interdisciplinary design teams, ethics, materials selection, design process, development of proposal, project planning and scheduling, project execution and resource scheduling, and communication of design.
Prerequisites: (ME 322 [Min Grade: D] and ME 360 [Min Grade: D]) or (ME 322 [Min Grade: D] and ME 370 [Min Grade: D]) or (ME 322 [Min Grade: D] and ME 371 [Min Grade: D]) or (ME 360 [Min Grade: D] and ME 370 [Min Grade: D]) or (ME 360 [Min Grade: D] and ME 371 [Min Grade: D]) or (ME 370 [Min Grade: D] and ME 371 [Min Grade: D]) and MSE 401 [Min Grade: D](Can be taken Concurrently)

ME 499. Capstone Design Project II. 3 Hours.
Continuation of ME 498. Capstone interim and final design reviews with written and oral reports. ME 498 must be taken the term immediately before ME 499.
Prerequisites: (ME 322 [Min Grade: D] or ME 360 [Min Grade: D] or ME 370 [Min Grade: D] or ME 371 [Min Grade: D]) and (ME 322 [Min Grade: D] or ME 360 [Min Grade: D] or ME 370 [Min Grade: D] or ME 371 [Min Grade: D]) and (ME 322 [Min Grade: D] or ME 360 [Min Grade: D] or ME 370 [Min Grade: D]) and ME 498 [Min Grade: D]