Mechanical Engineering

Interim Chair: Gregg M. Janowski, PhD

Degree Offered: Bachelor of Science in Mechanical Engineering

Accreditation: The Bachelor of Science in Civil Engineering degree program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission’s General Criteria and Program Criteria for Mechanical and Similarly Named Engineering Programs.

Website: https://www.uab.edu/engineering/me/undergraduate

Program Director: Pasquale Cinnella, PhD

Email: pc1@uab.edu

Phone: 205-934-8460

Mechanical engineering is a broad-based discipline that embraces the two major areas of mechanical systems and thermal systems. With an understanding of the phenomena associated with these topics, mechanical engineers conceive and design a wide variety of devices, machines, and systems to meet the needs and desires of a modern economy. Mechanical engineers also engage in applied research, product development, and project management. Mechanical engineers have a primary role in addressing the problems related to manufacturing, productivity, and safety in the workplace; supply and efficient utilization of energy; transportation; and human rehabilitation.

The mechanical engineering curriculum includes a core of fundamental engineering coursework and advanced courses in thermodynamics, fluid mechanics, heat transfer, mechanics of machinery, and mechanical design. In addition, the program includes courses in mathematics; calculus-based physics; chemistry; humanities and fine arts; and history, social, and behavioral sciences. Laboratory experiences are provided in each area to illustrate the application of theory in engineering practice. With additional coursework, the mechanical engineering program can also be utilized as a pre-health curriculum.

Please refer to the School of Engineering overview for policies regarding admission; change of major; transfer credit; transient status; dual degree programs; reasonable progress; academic warning, probation, and suspension; reinstatement appeals; and graduation requirements.

Vision

To be a nationally and internationally recognized research-oriented mechanical engineering program – a first choice for undergraduate and graduate education.

Mission

To prepare students to be immediately productive and able to adapt to and lead in a rapidly changing environment and to create and apply knowledge for the benefit of society.

Program Educational Objectives

The Educational Objectives of the Mechanical Engineering undergraduate program are the following:

• Graduates will meet or exceed the expectations of their employers in mechanical engineering or any other career path they choose;
• Graduates will pursue continuing education opportunities in their chosen field through a variety of means, such as professional development training and advanced education;
• Graduates will pursue leadership positions in their selected profession and/or communities.

Student Outcomes

Upon completion of the BSME degree program, our graduates will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Bachelor of Science in Mechanical Engineering

Requirements

<table>
<thead>
<tr>
<th>Core Curriculum as Specified for Engineering Majors</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area I: Written Composition (6 hrs)</td>
<td></td>
</tr>
<tr>
<td>Area II: Humanities and Fine Arts (9 hrs)</td>
<td></td>
</tr>
<tr>
<td>Area III: Natural Sciences and Mathematics (12 hrs)</td>
<td></td>
</tr>
<tr>
<td>MA 125 Calculus I & 125L and Calculus I Lab</td>
<td></td>
</tr>
<tr>
<td>PH 221 General Physics I & 221L and General Physics Laboratory I & 221R and General Physics I Recitation</td>
<td></td>
</tr>
<tr>
<td>PH 222 General Physics II & 222L and General Physics Laboratory II & 222R and General Physics II - Recitation</td>
<td></td>
</tr>
<tr>
<td>Area IV: History, Social, and Behavioral Sciences (9 hrs)</td>
<td></td>
</tr>
</tbody>
</table>

Other Required Courses

CE 210 Statics	
CE 220 Mechanics of Solids	
CE 221 Mechanics of Solids Laboratory	
CE 395 Engineering Economics	

Accreditation: The Bachelor of Science in Mechanical Engineering degree program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission’s General Criteria and Program Criteria for Mechanical and Similarly Named Engineering Programs.
General Chemistry Courses
- CH 115: General Chemistry I
- CH 116: General Chemistry I Laboratory
- CH 117: General Chemistry II
- CH 118: General Chemistry II Laboratory

Electrical Engineering Courses
- EE 312: Electrical Systems

Engineering Mechanics Courses
- ME 215: Dynamics
- ME 215R: Dynamics Recitation
- ME 241: Thermodynamics I
- ME 241R: Thermodynamics Recitation
- ME 321: Introduction to Fluid Mechanics
- ME 322: Introduction to Heat Transfer

Mechanical Engineering Courses
- ME 322: Introduction to Heat Transfer
- ME 360: Introduction to Mechatronic Systems Engineering
- ME 361: Thermo-Fluids Systems
 & ME 361L: Thermo-Fluids Systems Laboratory
- ME 364: Linear Algebra and Numerical Methods
- ME 370: Kinematics and Dynamics of Machinery
- ME 371: Machine Design
- ME 498: Capstone Design Project I
- ME 499: Capstone Design Project II

Mathematical and Scientific Elective
- MA 125: Calculus I
- MA 125L: Calculus I Laboratory
- MA 126: Calculus II
- MA 227: Introduction to Statistics
- MA 252: Scientific Programming
- MA 360: Scientific Programming
- MA 361: Mathematical Modeling
- MA 443: Vector Analysis
- MA 445: Complex Analysis
- MA 453: Fourier Analysis

Physics Courses
- MA 123: Introductory Biology I
 & MA 123L: Introductory Biology I Laboratory
- CH 235: Organic Chemistry I
 & CH 235R: Organic Chemistry I Recitation
- ES 101: Physical Geology

Computer Aided Engineering Courses
- ME 421: Introduction to Computational Fluid Dynamics Basics
- ME 456: Building Energy Modeling and Analysis
- ME 464: Introduction to Finite Element Method

Mechanical Systems Courses
- ME 455: Thermal-Fluid Systems Design
- ME 456: Building Energy Modeling and Analysis

Math/Science Elective
- BY 101: Topics in Contemporary Biology
- BY 108: Human Population and the Earth's Environment
- BY 123: Introductory Biology I
 & BY 123L: Introductory Biology I Laboratory
- CH 235: Organic Chemistry I
 & CH 235R: Organic Chemistry I Recitation
- ES 101: Physical Geology
- MA 180: Introduction to Statistics
- MA 360: Scientific Programming
- MA 361: Mathematical Modeling
- MA 443: Vector Analysis
- MA 445: Complex Analysis
- MA 453: Fourier Analysis

Mechanical Engineering Electives
- Three Mechanical Engineering (ME) electives: one with computer-aided engineering content, one thermal fluids elective, and one mechanical systems elective.

Residency Requirement
In addition to UAB's residency requirement, to earn a bachelor of science in mechanical engineering from UAB, the program requires that students complete the following courses at UAB:

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any two of the following:</td>
<td>6</td>
</tr>
<tr>
<td>ME 322: Introduction to Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 360: Introduction to Mechatronic Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>ME 370: Kinematics and Dynamics of Machinery</td>
<td></td>
</tr>
<tr>
<td>ME 371: Machine Design</td>
<td></td>
</tr>
<tr>
<td>ME 498: Capstone Design Project I</td>
<td>3</td>
</tr>
<tr>
<td>ME 499: Capstone Design Project II</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 12

Please refer to the School of Engineering overview for policies regarding admission; change of major; transfer credit; transient status; dual degree programs; reasonable progress; academic warning, probation, and suspension; reinstatement appeals; and graduation requirements.

Curriculum for the Bachelor of Science in Mechanical Engineering (BSME)

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 110<sup>1</sup></td>
<td>1</td>
</tr>
<tr>
<td>EGR 150</td>
<td>1</td>
</tr>
<tr>
<td>MA 125</td>
<td>4</td>
</tr>
<tr>
<td>& MA 125L</td>
<td>4</td>
</tr>
<tr>
<td>CH 115</td>
<td>2</td>
</tr>
<tr>
<td>CH 116</td>
<td>2</td>
</tr>
<tr>
<td>MA 180: Introduction to Statistics</td>
<td>1</td>
</tr>
<tr>
<td>MA 360: Scientific Programming</td>
<td>1</td>
</tr>
<tr>
<td>MA 361: Mathematical Modeling</td>
<td>1</td>
</tr>
<tr>
<td>MA 443: Vector Analysis</td>
<td>1</td>
</tr>
<tr>
<td>MA 445: Complex Analysis</td>
<td>1</td>
</tr>
<tr>
<td>MA 453: Fourier Analysis</td>
<td>1</td>
</tr>
<tr>
<td>ME 421: Introduction to Computational Fluid Dynamics Basics</td>
<td>1</td>
</tr>
<tr>
<td>ME 456: Building Energy Modeling and Analysis</td>
<td>1</td>
</tr>
<tr>
<td>ME 464: Introduction to Finite Element Method</td>
<td>1</td>
</tr>
<tr>
<td>ME 411: Intermediate Fluid Mechanics</td>
<td>1</td>
</tr>
<tr>
<td>ME 421: Introduction to Computational Fluid Dynamics Basics</td>
<td>1</td>
</tr>
<tr>
<td>ME 445: Combustion</td>
<td>1</td>
</tr>
<tr>
<td>ME 447: Internal Combustion Engines</td>
<td>1</td>
</tr>
<tr>
<td>ME 454: Heating, Ventilating and Air Conditioning</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Hours: 14

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 210</td>
<td>3</td>
</tr>
<tr>
<td>ME 215</td>
<td>3</td>
</tr>
<tr>
<td>& ME 215L</td>
<td>3</td>
</tr>
<tr>
<td>ME 102</td>
<td>2</td>
</tr>
<tr>
<td>& ME 221L</td>
<td>2</td>
</tr>
<tr>
<td>& ME 221R</td>
<td>2</td>
</tr>
<tr>
<td>Core Curriculum Area II or IV<sup>2</sup></td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 18
EGR 2653 & 4 CE 220 & 3 \\
ME 241 & 3 CE 221 & 1 \\
& 241R & \\
PH 222 & 4 ME 242 & 3 \\
& 222L & \\
& 222R & \\
CH 117 & 3 Math/Science Elective4 & 3 \\
& 117R & \\

<table>
<thead>
<tr>
<th>Junior</th>
<th>First Term</th>
<th>Hours</th>
<th>Second Term</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 321</td>
<td>3 ME 322</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 364</td>
<td>3 ME 360</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 370</td>
<td>3 ME 361</td>
<td>3</td>
<td>& 361L</td>
<td></td>
</tr>
<tr>
<td>MSE 280</td>
<td>3 ME 371</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Curriculum Area II or IV2</td>
<td>3 EE 312</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total credit hours: 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Transfer students may substitute EGR 200 for EGR 110 and EGR 111.
2 Please refer to the Core Curriculum as specified for Engineering majors.
3 Students may also take both MA 227 and MA 252 instead of both EGR 265 and the Math/Science elective.
4 Students may choose from the following: BY 101, BY 108, BY 123, CH 235, ES 101, MA 180, MA 360, MA 361, MA 444, MA 445, MA 453, PH 351
5 Mechanical systems electives include: ME 430, ME 431, ME 432, ME 464, ME 475, ME 477, ME 478, and ME 480
6 Thermal fluids electives include: ME 411, ME 421, ME 445, ME 447, ME 449, ME 454, ME 455, and ME 456
7 Electives with computer-aided engineering content include: ME 421, ME 456, and ME 464

ME 102. Engineering Graphics. 2 Hours.
Basic concepts in technical sketching, computer-aided drawing and design, projections, sections, and dimensioning.
Prerequisites: MA 105 [Min Grade: C](Can be taken Concurrently) or MA 106 [Min Grade: C](Can be taken Concurrently) or MA 107 [Min Grade: C](Can be taken Concurrently) or MA 125 [Min Grade: C](Can be taken Concurrently) or MA 225 [Min Grade: C]

ME 103. Drawing, Design and Measurement for Industrial Distribution. 3 Hours.
Technical sketching and reading of engineering drawings and analysis of systems involving human performance. For non-engineering majors. Not available for credit toward engineering major.

ME 215. Dynamics. 3 Hours.
Kinematics of particles in Cartesian, cylindrical, and polar coordinates.
Simple relative motion. Second law application in rectilinear translation.
Prerequisites: CE 210 [Min Grade: C]

ME 215R. Dynamics Recitation. 0 Hours.
An application-based course designed to reinforce concepts from ME 215.

ME 241. Thermodynamics I. 3 Hours.
Thermodynamic definitions, properties of a pure substance, ideal, and real gases, work, and heat. Fundamental laws of thermodynamics, entropy, reversible cycles, and irreversibility.
Prerequisites: PH 221 [Min Grade: C] and (CH 115 [Min Grade: C] or CH 125 [Min Grade: C]) and MA 126 [Min Grade: C](Can be taken Concurrently) or MA 226 [Min Grade: C](Can be taken Concurrently)

ME 241R. Thermodynamics Recitation. 0 Hours.
An application-based course designed to reinforce concepts from ME 241.

ME 242. Thermodynamics II. 3 Hours.
Application of thermodynamic principles to engineering systems; vapor power cycles; gas turbine cycles; Otto and Diesel cycles; refrigeration cycles; mixtures of ideal gases; psychrometrics.
Prerequisites: ME 241 [Min Grade: D] and (BME 150 [Min Grade: D] or EGR 150 [Min Grade: D]) and (MA 126 [Min Grade: C] or MA 226 [Min Grade: C])

ME 251. Introduction to Thermal Sciences. 2 Hours.
Introduction to thermodynamics and heat transfer for non-mechanical engineering majors.
Prerequisites: MA 126 [Min Grade: C] or MA 226 [Min Grade: C] and PH 221 [Min Grade: C]

ME 302. Overview of Mechanical Components. 3 Hours.
An introduction to statics, dynamics, strength of materials, and engineering design. Transformation of energy, thermodynamics, heat transfer, and fluid mechanics. For non-engineering majors. Not available for credit toward engineering major.

ME 321. Introduction to Fluid Mechanics. 3 Hours.
Fluid properties, fluid statics, fluid in motion (control volume method), pressure variation in flowing fluids (Bernoulli equation), principles of momentum and energy transport, dimensional analysis and similitude, internal flow and external flow.
Prerequisites: ME 241 [Min Grade: D] and (MA 227 [Min Grade: D] and MA 252 [Min Grade: D] or EGR 265 [Min Grade: D]) and CE 210 [Min Grade: D] and (BME 150 [Min Grade: D] or EGR 150 [Min Grade: D])

Courses

ME 011. Undergraduate Internship in ME. 0 Hours.
Engineering internship experience in preparation for the student's intended career. Students in a university recognized cooperative education experience should register for COP 011 or COP 012.
ME 321. Introduction to Heat Transfer. 3 Hours.
Fundamentals of heat transfer and their application to practical problems, including steady and transient heat conduction, external and internal forced convection, natural convection and radiation.
Prerequisites: ME 321 [Min Grade: C]

ME 360. Introduction to Mechatronic Systems Engineering. 3 Hours.
Prerequisites: ME 215 [Min Grade: C] and ME 364 [Min Grade: C]

ME 361. Thermo-Fluids Systems. 3 Hours.
Pressure, temperature, fluid flow, and heat transfer instrumentation and their application to measurements of mass, heat, and momentum transport, flow characterization, heat engine and refrigeration cycles, and other thermal-fluids experiments. Experimental uncertainty analysis. Writing proficiency is required. ME 361L must be taken concurrently.
Prerequisites: ME 242 [Min Grade: C] (Can be taken Concurrently) and ME 322 [Min Grade: C] (Can be taken Concurrently)

ME 361L. Thermo-Fluids Systems Laboratory. 0 Hours.
Lab component for ME 361. Thermo-Fluids Systems. ME 361 must be taken concurrently.

ME 364. Linear Algebra and Numerical Methods. 3 Hours.
Linear equations and matrices, real vector bases, matrix decompositions, linear transformations; determinants, eigenvalues, eigenvectors; numerical methods for linear systems of equations, integration, ordinary differential equations; approximation, interpolation, least squares fits.
Prerequisites: MA 227 [Min Grade: D] and MA 252 [Min Grade: D] or EGR 265 [Min Grade: D] and (BME 150 [Min Grade: D] or EGR 150 [Min Grade: D])

ME 370. Kinematics and Dynamics of Machinery. 3 Hours.
Displacement, velocity and acceleration analysis, synthesis and design of linkages and mechanisms for various engineering applications on the basis of motion requirements. Static and dynamic force analysis of linkages, balancing of rotors and reciprocating machines. Significant consideration is given to designing geometry of gear sets: spur, helical, worm, and bevel gears. Analysis of planetary gear sets and drivetrains completes the course. Computer workshops support the learning process of main technical components.
Prerequisites: ME 102 [Min Grade: C] and ME 215 [Min Grade: C]

ME 371. Machine Design. 3 Hours.
Body stress, deflection and fatigue strength of machine components. Failure theories, safety factors and reliability, surface damage. Application to the design of gears, shafts, bearings, welded joints, threaded fasteners, belts and chains, keys, pins, springs, as well as mechanical design and selection of other machine components. Software applications, design projects, and exposure to hardware and systems are used to reinforce concepts.
Prerequisites: CE 220 [Min Grade: C] and (BME 150 [Min Grade: C] or EGR 150 [Min Grade: C]) and ME 215 [Min Grade: C]

ME 411. Intermediate Fluid Mechanics. 3 Hours.
Applications of fluid dynamic principles to engineering flow problems such as turbo-machinery flow and one-dimensional compressible flow. Vorticity, potential flow, viscous flow, Navier-Stokes solutions, and boundary layers.
Prerequisites: ME 321 [Min Grade: C] and ME 364 [Min Grade: C]

ME 421. Introduction to Computational Fluid Dynamics Basics. 3 Hours.
Governing equations for fluid flows, classifications of flow regimes, and approaches to analyze fluid flow problems. Introduction to Computational Fluid Dynamics (CFD), mesh generation, boundary conditions, numerical solution of equations governing fluid flows, and visualization. Hands-on exercises using a commercial CFD solver.
Prerequisites: ME 321 [Min Grade: C]

ME 430. Vehicular Dynamics. 3 Hours.
Introduction to the fundamentals of mechanics and analytical methods for modeling vehicle dynamics and performance. Topics include tire-road interaction modeling, vehicle longitudinal dynamics and traction performance, lateral dynamics, handling, stability of motion and rollover, as well as contribution of the drivetrain system, steering system and suspension configurations to the dynamics of a vehicle. Software applications, projects, and exposure to hardware and systems are used to reinforce concepts.
Prerequisites: ME 215 [Min Grade: C]

ME 431. Introduction to Vehicle Drive Systems Engineering. 3 Hours.
Engineering fundamentals of mechanical and mechatronic, hybrid-electric, and electric drive systems. Applications to passenger cars and commercial vehicles. Drive system and component design, including main clutches and torque converters, transmissions, transfer cases, and drive axles. Introduction to plug-in hybrid-electric vehicles.
Prerequisites: ME 215 [Min Grade: C] and ME 370 [Min Grade: C] (Can be taken Concurrently)

ME 432. Introduction to Electric and Hybrid Vehicle Engineering. 3 Hours.
Introduction to fully electric and hybrid vehicle engineering. Mechatronic system and component design. Batteries and energy storage devices. Plug-in hybrid electric vehicles.
Prerequisites: ME 215 [Min Grade: C] and ME 360 [Min Grade: C] (Can be taken Concurrently)

ME 445. Combustion. 3 Hours.
Evaluation of the impact of fuel characteristics and operating conditions on the performance of coal-fired electric utility steam-raising plant and the prospects for continued reliance on coal as fuel for electric power generation. The phenomena emphasized are the behavior of turbulent jets: ignition, devolatilization and combustion of coal particles; radiative heat transfer and the effect of ash deposits on heat transfer; formation of air pollutants and their removal from combustion products; integrated gasification combined cycle; and capture and sequestration of carbon dioxide.
Prerequisites: ME 242 [Min Grade: C] and ME 322 [Min Grade: C]

ME 447. Internal Combustion Engines. 3 Hours.
Fundamentals of reciprocating internal combustion engines: engine types, engine components, engine design and operating parameters, thermochromy of fuel-air mixtures, properties of working fluids, ideal models of engine cycles, engine operating characteristics, gas-exchange processes, fuel metering, charge motion within the cylinder, combustion in spark-ignition and compression ignition engines.
Prerequisites: ME 215 [Min Grade: D] and ME 242 [Min Grade: D]

ME 454. Heating, Ventilating and Air Conditioning. 3 Hours.
Fundamentals and practice associated with heating, ventilating, and air conditioning; study of heat and moisture flow in structures, energy consumption, and design of practical systems.
Prerequisites: ME 242 [Min Grade: C] and ME 322 [Min Grade: C]
ME 455. Thermal-Fluid Systems Design. 3 Hours.
Comprehensive design problems requiring engineering decisions and
code/Standard compliance. Emphasis on energy system components:
piping networks, pumps, heat exchangers. Includes fluid transients and
system modeling.
Prerequisites: ME 242 [Min Grade: C] and ME 322 [Min Grade: C]

ME 456. Building Energy Modeling and Analysis. 3 Hours.
Computer modeling of energy use and thermal comfort in buildings
using several software tools. Interpretation and analysis of the results.
Implementing energy efficiency measures in the model and studying the
effects on energy use.
Prerequisites: ME 242 [Min Grade: C] and ME 322 [Min Grade: C]

ME 461. Mechanical Systems. 3 Hours.
This course concentrates on main technical principles and aspects of
mechanical systems design. The course also provides fundamental
knowledge on test equipment and experimental techniques for
experimenting on main technical principles of mechanical design. This
course discusses data acquisition systems and signal conditioning, and
design of experiments. Writing proficiency is required. ME 461L must be
taken concurrently.
Prerequisites: CE 220 [Min Grade: C] and ME 215 [Min Grade: C]

ME 461L. Mechanical Systems Laboratory. 0 Hours.
Lab Component of ME 461 Mechanical Systems. ME 461 must be taken
concurrently.

ME 464. Introduction to Finite Element Method. 3 Hours.
Concepts and applications of finite element method. Development and
applications of basic elements used in engineering mechanics. Use
of finite element analysis software. Application of finite element concept to
several areas of mechanics.
Prerequisites: CE 220 [Min Grade: D] and ME 364 [Min Grade: D]

ME 475. Mechanical Vibrations. 3 Hours.
Development of equations of motion for free and forced single-degree-of
freedom (SDF) systems. Multi-degree-of-freedom systems. Transient
response, support motion and vibration isolation for SDOFs. Vibration
absorbers, generalized mass and stiffness, orthogonality of normal
modes, and root solving and Gauss elimination procedures. Cholesky
decomposition and Jacobi diagonalization methods.
Prerequisites: MA 227 [Min Grade: C] and MA 252 [Min Grade: C] or
EGR 265 [Min Grade: C] and ME 215 [Min Grade: C]

ME 477. Systems Engineering. 3 Hours.
Exposure to the field of systems engineering, mission design,
requirements development, trade studies, project life cycle, system
hierarchy, risk analysis, cost analysis, team organization, design
fundamentals, work ethics, compare and evaluate engineering
alternatives, systems thinking. Registration is restricted to junior or higher
standing.

ME 478. Automated Manufacturing. 3 Hours.
Introduction to automated manufacturing technology. Components of
automated systems (controllers, sensors and actuators) and automated
manufacturing sub-systems (3D printer, CNC, robot and computer vision)
will be studied in a lecture/lab environment with hands on activities.
Prerequisites: ME 102 [Min Grade: C] and EGR 150 [Min Grade: C]

ME 480. Instrumentation and Measurements. 3 Hours.
Thorough exploration of fundamental measurement concepts and
techniques for data acquisition and validation. Explanation of important
selection criteria for the identification and configuration of commercially
available data acquisition devices. Students will get hands-on experience
following best practices for data acquisition (high speed vs low speed)
relevant to their field of study or career. Many types of sensors, their
underlying technology, and measurement techniques will be discussed
(i.e. accelerometers, load cells, Digital Image Correlation, etc.) to
demonstrate best practices for sensor selection for a wide range of
specialized applications. Registration is restricted to junior or higher
standing.

ME 489. Undergraduate Research in Mechanical Engineering. 1-6 Hour.
Undergraduate research experiences in mechanical engineering.
Prerequisites: EGR 200 [Min Grade: C] or EGR 110 [Min Grade: C] and
EGR 111 [Min Grade: C] or HG 111 [Min Grade: C] and MA 125 [Min
Grade: C] or MA 225 [Min Grade: C] and PH 221 [Min Grade: C](Can be
taken Concurrently)

ME 490. Special Topics in Mechanical Engineering. 1-3 Hour.
Special Topics in Mechanical Engineering.

ME 491. Individual Study in Mechanical Engineering. 1-6 Hour.
Individual Study in Mechanical Engineering.

ME 494. Mechanical Engineering Seminar. 1 Hour.
Required for ME undergraduate Honors Program students. Presentations
by students, faculty, and guests regarding current research.

ME 496. Honors Research. 1-6 Hour.
Research opportunities for undergraduate students in the Mechanical
Engineering Honors Program.
Prerequisites: EGR 301 [Min Grade: C]

ME 498. Capstone Design Project I. 3 Hours.
Capstone design project: interdisciplinary design teams, ethics, materials
selection, design process, development of proposal, project planning
and scheduling, project execution and resource scheduling, and
communication of design.
Prerequisites: ME 322 [Min Grade: C] and ME 360 [Min Grade: C] or
(ME 322 [Min Grade: C] and ME 370 [Min Grade: C]) or (ME 322 [Min
Grade: C] and ME 371 [Min Grade: C]) or (ME 360 [Min Grade: C] and
ME 370 [Min Grade: C]) or (ME 360 [Min Grade: C] and ME 371 [Min
Grade: C]) or (ME 370 [Min Grade: C] and ME 371 [Min Grade: C]) and
MSE 401 [Min Grade: C](Can be taken Concurrently)

ME 499. Capstone Design Project II. 3 Hours.
Continuation of ME 498. Capstone interim and final design reviews with
written and oral reports. ME 498 must be taken the term immediately
before ME 499.
Prerequisites: ME 322 [Min Grade: C] or ME 360 [Min Grade: C] or
ME 370 [Min Grade: C] or ME 371 [Min Grade: C]) and (ME 322 [Min
Grade: C] or ME 360 [Min Grade: C] or ME 370 [Min Grade: C] or ME 371
[Min Grade: C]) and (ME 322 [Min Grade: C] or ME 360 [Min Grade: C]
or ME 370 [Min Grade: C] or ME 371 [Min Grade: C]) and ME 498 [Min
Grade: C]